

Application description Engine Emissions: Gas Compression, Power Generation, and CHP*

Typical combustion process in a CHP engine

- I. The fuel/air mixture is **drawn** in by way of the inlet valve
- II. The mixture is **compressed** and heated.
- III. Ignition of the fuel-air mixture (by a spark plug in richburn engines, by self-ignition in diesel engines).
- IV. This causes a **rotary motion** of the crankshaft. The rotary motion is converted into electricity by the generator.
- V. Burnt up exhaust gas is **ejected** through the open outlet valve.
- VI. The **turbocharger**, driven by the exhaust gas, compresses the combustion air that is supplied to the engine. As a result, engine output is increased while fuel consumption is reduced and emission levels are improved.
- VII. The **heat exchanger** utilises the heat stored in the exhaust gas to operate the heating system or is used as **process heat**.

Pages 1/4 www.testo.com

^{*} Counts in general for all engine applications

Application description Engine Emissions: Gas Compression, Power Generation, and CHP*

Measurement

Measurement point (1) efficiency test measurement

Measurement point before the catalytic converter (after the turbocharger)

Why are measurements taken?

- Checking and inspecting engine efficiency
- Error detection/analysis of the engine's operating conditions, including engine control system
- Optimum adjustment of the engine in order to save fuel
 better efficiency
- Correct adjustment of the relations between ignition timing, excess air etc. of the engine

Typical exhaust gas properties:

- **Temperature:** approx. +650 °C
- Overpressure: up to approx.
 100 mbar (dependent on turbocharger and catalytic converter)

s

- Testing catalytic converter efficiency

Why are measurements

taken?

 Checking emission limits (dependent on national emission standards, e.g. TI Air ("TA-Luft")

Measurement point (2) emission test measurement

Measurement point after the catalytic converter (at the end of the exhaust pipe)

Typical exhaust gas properties:

- **Temperature:** approx. +250 °C
- **Overpressure:** no high overpressure in the flue gas
- NO_x value: approx. 480 mg/m³ (guideline, since slightly below 500 mg/m³ limit value)

Measurement aperture

- Short, welded-on connecting piece with external thread
- Bore hole with internal thread, directly integrated into the exhaust pipe
- Various flange solutions

Typical measurement values with testo 350**:

Meas. parameter	Natural gas	Landfill gas	Oil
O ₂	8 %	5 to 6 %	8 to 10 %
NO	100 300 ppm	100 500 ppm	800 1000 ppm
NO ₂	30 60 ppm	90 110 ppm	10 20 ppm
CO	20 40 ppm	350 450 ppm	450 550 ppm
CO ₂	10 %	13 %	7 to 8 %
SO ₂		30 ppm	30 to 50 ppm

^{**} lean burn engine

Practical information:

Excess air, fuel pressure, the timing of the engine or the ambient temperature or humidity can have significant impact on the emission. Must consider all when tuning or adjusting engines.

Typical measurement values with testo 350:

Meas. parameter	Type of engine	Limit values
CO	Natural gas	650 mg/m ³
NO + NO ₂	Compression ignition (Diesel) < 3 MW	4000 mg/m ³
NO + NO ₂	Compression ignition (Diesel) > 3 MW	2000 mg/m ³
NO + NO2	Other 4-stroke (gas engines)	500 mg/m ³
NO + NO ₂	Other 2-stroke (gas engines)	800 mg/m ³
O ₂	Reference value	5 vol.%
SO ₂	IAW DIN 51603 standard	

Information:

These measurement locations can often only be reached using a ladder, platform or similar.

Pages 2/4 www.testo.com

^{*} Counts in general for all engine applications

Application description Engine Emissions: Gas Compression, Power Generation, and CHP*

Theoretical background 1

Development of emissions based on λ values

In general:

The curve on the combustion chart shifts, depending on the relation between air and fuel ratio

* Counts in general for all engine applications

NO_X:

 $NO_X = NO + NO_2 \rightarrow measure$ NO_X separately

- ${\rm NO_2}$ components can fluctuate widely
- Consisting of fuel NO_{X} and thermal NO_{X}
- Highest NOx value = highest mechanical efficiency

CxHy:

 $C_XH_Y + O_2 \rightarrow CO_2 + H_2O$ (combustion equation)

Rich engines (λ ≤ 1)

Characteristics:

- Engines with air deficiency (Lambda = 1): Fuel is therefore not used efficiently
- Typical applications: Compressor stations e.g. gas transportation (comparable to gasoline engine in cars)
- Typical working range:
 λ~0.85 to 0.95

Advantage and disadvantage for rich engine:

- + High performance density
- + Initial cost is lower than lean burn engine
- + Secure operation
- High fuel consumption
- High emissions (if not controlled)
- Not suitable for use with bio-gas

NO_X (nitrogen oxides):

$NO_{x} \leq NO_{x}$ max.:

low NO_x component due to incompletely burned or unburned fuel (HC)

-> no max. temperature development (so less thermal NO_X is generated)

C_XH_Y or HC (hydrocarbon, e.g. methane):

Due to the lack of oxygen, not all fuel (HC) is burnt up

-> high C_XH_Y value

CO (carbon monoxide):

Oxygen deficiency in the combustion process leads to the inability of all CO molecules to be converted into CO₂. As a result, fuel leaves the engine incompletely burned or unburned.

-> leads to high fuel consumption (HC slip)

Lean engines $(\lambda > 1)$

Characteristics:

- Engines with excess air (lean engines)
- -> Fuel is used efficiently
- Typical applications: Power supply for hospitals, government buildings, server buildings, sewage plants, mining
- Typical working range:
 λ~1.05 to 1.3

Advantage and disadvantage for lean engine:

- + Suitable for use with bio-gas
- + High fuel efficiency
- + Low in emissions
- Low effectivity

$\mathbf{NO}_{\mathbf{X}}$ (nitrogen oxides):

NO_X > NO_X max.: An elevated O₂ level leads to a lowering of the combustion chamber temperature, therefore low NO_X percentage (lower levels of thermal NO_X)

CxHy or HC (hydrocarbon, e.g. methane):

If excess oxygen levels are too high, the combustion temperature is lowered such that the flame temperature is no longer sufficient to burn up all of the fuel (HC)

-> Increased C_xH_y value

CO (carbon monoxide):

Excess oxygen in the combustion process leads to the ability of the CO molecules to combine with ${\rm O_2}$ to ${\rm CO_2}$

-> Oxygen is left over

Pages 3/4 www.testo.com

Application description Engine Emissions: Gas Compression, Power Generation, and CHP*

Theoretical background 2

Correctly configuring the engine to prevent "knocking" and "spark failures" of the engine.

Rich engine

Secure engine operation

Large engine adjustment corridor

"Lean misfire" or "rich misfire"

• In rich combustion engines, this is unusual

Lean engine

Efficient operation

- Exact adjustment of the engine using measuring instrument (testo 350) necessary
- Small engine adjustment corridor

If engine incorrectly adjusted:

• "Lean misfire" or "knocking risk"

Setting options for rich engines

Incorrect configuration of the fuel/air mixture:

Depending on the load point and on the specifications provided by the engine manufacturers or the national emission regulations

High HC and/or NO, values after TWC (3-way catalytic converter):

-> Measurement before/after TWC, see high NO_v values before TWC

High NOx levels before TWC:

-> High temperatures in the combustion chamber: Set ignition in "earlier" direction and check Lambda probe

High NOx or HC values before

-> Cylinder error caused by misfire: burnable gas composition, ambient temperature and humidity, temperature and pressure of the burnable gas, inlet air temperature after the turbocharger etc.

Setting options for lean engines

High NOx levels before Selecitve Setting options Catalytic Reduction (SCR):

-> Measurement before/after SCR, see high NO_x values before SCR

High NO, levels before SCR:

- -> Ignition point too early
- -> Shift ignition point towards late

Too low methane count (often fluctuation with bio-gas):

- -> low ignition temperature
- -> premature ignition

for knocking:

- -> incandescent burnup (combustion and oil residue) on burner walls
- -> premature ignition
- -> new engines have knocking
- -> Stone impact, rattling chains etc. can lead to error signals from the knocking sensor (=acoustic)

CAUTION:

"Ignition point too early" leads to knocking, "ignition point too late" leads to spark failures -> precise adjustment only possible with measuring instrumentation. "Guideline values" can also have an effect on other parameters (e.g. lubricants, temperatures etc.), which can lead to increased wear.

Why a catalytic converter?

General

Principle:

Catalytic converters increase the

speed of a chem. reaction by lowering the activation energy. Catalytic converters are not used up themselves.

Rich engine

3-way catalytic converter (TWC):

- Controlled catalytic converter: is controlled by a λ probe (sensor which analyses the air/ fuel ratio in the flue gas of a combustion process)
- Reduces pollutants by up to 90%: CO and NOx and HC
- Optimum working range: $\lambda \sim 0.98$ to 0.998

Lean engine

Oxidising catalytic converter:

Reduces CO and HC emissions; NO_v emissions, however, are not reduced.

SCR (Selective Catalytic Reduction) = DeNOx:

NOx reduction in exhaust gases

www.testo.com Pages 4/4

^{*} Counts in general for all engine applications