

Theoretical background 1

Development of emissions based on Lambda (λ) values

In general:

The curve on the combustion chart shifts, depending on the relation between air and fuel ratio

NO_x:

- $NO_x = NO + NO_2 -> measure$ NO_x separately
- NO₂ components can fluctuate widely

CxHy:

 $C_vH_v + O_a \rightarrow CO_a + H_aO$

(combustion equation)

- Consisting of fuel NO_x and thermal NO_x
- Highest NOx value = highest mechanical efficiency

Rich burn engines ($\lambda \le 1$) Characteristics:

- Engines with air deficiency (Lambda = 1): Fuel is therefore not used efficiently
- Typical applications: Compressor stations (comparable to gasoline engine in cars)
- Typical working range: λ~0.85 to 0.95
- High emissions (if not controlled)
 Not suitable for use with bio-gas

Advantage and disadvantage

+ High performance density

+ Initial cost is lower than lean

+ Low emissions with controls

for rich engine:

burn engine

+ Secure operation

NO_x (nitrogen oxides):

- High fuel consumption

NO_x ≤ NO_x max.: low NO_x component due to incompletely burned or unburned fuel (HC)

 -> no max. temperature development (so less thermal NO_x is generated)

Lean burn engines $(\lambda > 1)$

Characteristics:

- Engines with excess air (lean engines)
- -> Fuel is used efficiently
- Typical applications: Gas compression, power supply for hospitals, government buildings, server buildings, sewage plants, mining
- Typical working range: λ ~1.05 to 1.3

Advantage and disadvantage for lean engine:

- + Suitable for use with bio-gas
- + High fuel efficiency
- + Low in emissions
- May require oxidation catalyst
- Higher initial cost

NO_x (nitrogen oxides):

 $NO_x > NO_x$ max.: An elevated O₂ level leads to a lowering of the combustion chamber temperature, therefore low NO_x percentage (lower levels of thermal NO_x)

Due to the lack of oxygen, not all fuel (HC) is combusted \rightarrow high C_vH_v value

C_vH_v or HC (hydrocarbon, e.g.

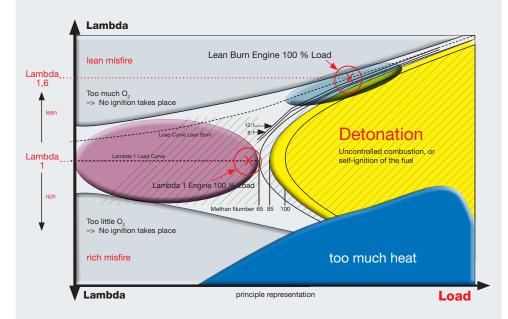
CO (carbon monoxide):

methane):

Oxygen deficiency in the combustion process leads to the inability of all CO molecules to be converted into CO₂. As a result, fuel leaves the engine incompletely burned or unburned. -> leads to high fuel consumption (HC slip)

CxHy or HC (hydrocarbon, e.g. methane): If excess oxygen levels are too

high, the combustion temperature is lowered such that the flame temperature is no longer sufficient to burn up all of the fuel (HC) -> Increased C,H_v value


CO (carbon monoxide):

Excess oxygen in the combustion process leads to the ability of the CO molecules to combine with O_2 to CO_2 -> Oxygen is left over

Theoretical background 2

Correctly configuring the engine to prevent "knocking" and "spark failures" of the engine.

Rich engine

Secure engine operation

- Large engine adjustment corridor
- "Lean misfire" or "rich misfire"
- In rich combustion engines, this is unusual Exact adjustment of the engine using measuring
- instrument (testo 350) necessary to optimize catalvst life

* Counts in general for all engine applications

Lean engine

Efficient operation

- · Exact adjustment of the engine using measuring instrument (testo 350) necessary
- Small engine adjustment corridor
- If engine incorrectly adjusted:
- "Lean misfire" or "knocking risk"

Setting options for rich engines

Incorrect configuration of the -> Measurement before/after fuel/air mixture: Depending on the load point and on the specifications provided by High NOx levels before TWC: the engine manufacturers or the -> High temperatures in the national emission regulations

High HC and/or NO, values after TWC (3-way catalytic converter):

Setting options for lean engines

High NOx levels before Selecitve **Catalytic Reduction (SCR):**

- -> Measurement before/after SCR,
 - see high NO_x values before (combustion and oil residue) on burner walls

High NO, levels before SCR:

- -> Ignition point too early
- -> Shift ignition point towards late

SCR

Too low methane count (often fluctuation with bio-gas):

-> low ignition temperature -> premature ignition

Why a catalytic converter?

General

increase the speed of a chem. reaction by lowering the activation energy. Catalytic converters are not used up themselves.

Reduces pollutants by up to 90%: CO and NOx and HC Optimum working range: λ~0.98 to 0.998

combustion process)

TWC, see high NO_v values

combustion chamber: Set

and check Lambda probe

ignition in "earlier" direction

before TWC

Setting options

-> incandescent burnup

-> premature ignition

-> new engines have knocking

-> Stone impact, rattling chains

from the knocking sensor

etc. can lead to error signals

Rich engine

- Controlled catalytic converter:

(sensor which analyses the air/

fuel ratio in the flue gas of a

3-way catalytic converter

is controlled by a λ probe

for knocking:

sensors

(=acoustic)

(TWC):

High NOx or HC values before TWC:

-> Cylinder error caused by misfire: burnable gas composition, ambient temperature and humidity, temperature and pressure of the burnable gas, inlet air temperature after the turbocharger etc.

CAUTION:

"Ignition point too early" leads to knocking, "ignition point too late" leads to spark failures -> precise adjustment only possible with measuring instrumentation. "Guideline values" can also have an effect on other parameters (e.g. lubricants, temperatures etc.), which can lead to increased wear.

Lean engine

Oxidising catalytic converter:

Reduces CO and HC emissions; NO_v emissions, however, are not reduced.

SCR (Selective Catalytic

Reduction) = DeNOx: NOx reduction in exhaust gases

Emissions Measurements	s	
Measurement point (1) e	efficiency test measurement	Measurement point (2) er
Measurement point before the (after the turbocharger)	catalytic converter	Measurement point after the cat (at the end of the exhaust pipe)
Why are measurements taken?	Typical exhaust gas properties:	Why are measurements taken?
 Checking and inspecting engine efficiency 	 Temperature: approx. +1,200 °F 	- Testing catalytic converter efficiency
 Error detection/analysis of the engine's operating conditions, including engine control system 	- Overpressure: up to approx. 100 mbar (dependent on turbocharger and catalytic	 Checking emission limits (dependent on national emission standards)
 Optimum adjustment of the engine in order to save fuel > better efficiency 	converter)	
 Correct adjustment of the relations between ignition timing, excess air etc. of the 		

H

Typical measurement values with testo 350**:

Meas. parameter	Natural gas	Landfill gas	Oil
O ₂	8 %	5 to 6 %	8 to 10 %
NO	100 - 300 ppm	100 - 500 ppm	800 - 1000 ppm
NO ₂	30 - 60 ppm	90 - 110 ppm	10 - 20 ppm
СО	20 - 40 ppm	350 - 450 ppm	450 - 550 ppm
CO ₂	10 %	13 %	7 to 8 %
SO ₂		30 ppm	30 to 50 ppm

** lean burn engine

engine

Practical information:

Excess air, fuel pressure, the timing of the engine or the ambient temperature or humidity can have significant impact on the emission. Must consider all when tuning or adjusting engines.

* Counts in general for all engine applications

mission test measurement

talytic converter

Typical exhaust gas properties:

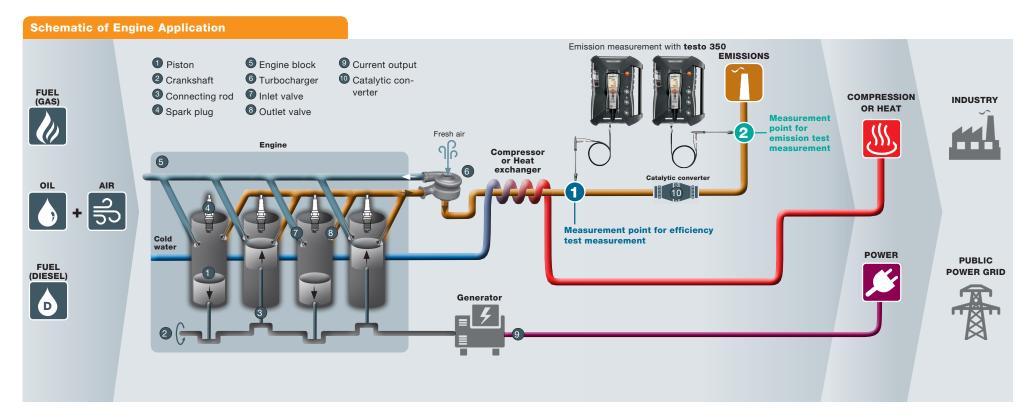
- Temperature: approx. 490 °F
- **Overpressure:** no high overpressure in the flue gas
- NO, value: Values range according to local regulations from 10-20 ppm to many 100s ppm

Typical measurement values with testo 350:

Meas. parameter	Type of engine	Limit values*	
CO	Natural gas	50-1,500 ppm	
$NO + NO_2$	Compression ignition (Diesel)	50-750 ppm	
NO + NO2	Other 4-stroke (gas engines)	50-750 ppm	
$NO + NO_2$	Other 2-stroke (gas engines)	50-750 ppm	
0 ₂	Reference value	15%	
*dependant upon local regulations			

Measurement ports

- Drilled hole or short, welded-on piece with external thread
- Bore hole with internal thread, directly integrated into the exhaust pipe
- Various flange solutions


Alternative: Drop line from higher elevation to ground. Line can be heated or non-heated.

Caution: Blow out line prior to sampling to remove moisture build up.

Information:

Many measurement locations can often only be reached using a ladder, platform or similar.

Typical combustion process in a CHP engine

- I. The fuel/air mixture is **drawn** in by way of the inlet valve.
- II. The mixture is **compressed** and heated.
- III. Ignition of the fuel-air mixture (by a spark plug in richburn engines, by compression via self-ignition in diesel engines).
- IV. This causes a **rotary motion** of the crankshaft. The rotary motion is converted into electricity by the generator.
- V. Burnt up exhaust gas is **ejected** through the open outlet valve.
- VI. The **turbocharger**, driven by the exhaust gas, compresses the combustion air that is supplied to the engine. As a result, engine output is increased while fuel consumption is reduced and emission levels are improved.
- VII. The **compressor or heat exchanger** utilizes the pressure or heat stored in the exhaust gas to operate the system.

* Counts in general for all engine applications