

testo 6456 COMPRESSED AIR METER

Instruction manual

Table of contents

1	GEN	NERAL INFORMATION	5
	1.1	Incoming goods inspection, transportation and storage	5
2	SAF	ETY PRECAUTIONS	6
	2.1	Intended use	
	2.2	Installation, commissioning and operation	
		Exclusion of liability	
3		SIGN AND FUNCTION / SCOPE OF DELIVERY	
	3.1	Electric sensor unit	
	3.2	Compac sealing cone	
	3.3	Compac steel welding neck flange	
	3.4	Measuring station	
		Factory certificate	
4		CHNICAL DATA	
	4.1	Thermal mass flow sensor	
	4.2	Accessories	
		Function	
5		TALLATION	
	5.1	Determining the installation point	
	5.2	Length measurements of the compressed air meter	
	5.3	Installation position	
	5.5	Direction of flow	
	5.6	Installation of the compressed air meter	
	5.7	Sensor replacement	
	5.8	Electrical connection	
6		ERATION	
_	6.1	-1 1 7	
7	ME	NU7.1 Process value display (RUN)	
	7.2	Main menu	35
	7.3	Extended functions EF	36
	7.4	Submenu OUT1	
	7.5	Submenu OUT2	
	7.6	Submenu CFG	
	7.7	Submenu MEM, DIS	
		Submenu COLR. SIM.	

Table of contents

8	CON	MMISSIONING	52
9		AMETER SETTING	
		General parameter setting	
	9.2	Settings for flow monitoring	55
	9.3	Settings for consumption quantity monitoring	56
	9.4	Settings for temperature monitoring	57
	9.5	Settings for pressure monitoring	58
	9.6	User settings (optional)	59
	9.7	Diagnostic functions	64
10	OPE	RATION	65
		UBLESHOOTING	
12	MAI	NTENANCE, REPAIR AND DISPOSAL	67
13	CON	IFIGURATION AND FACTORY SETTINGS	67
	13.1	Configuration of OUx on delivery	67
	13.2	Factory setting	68

1 GENERAL INFORMATION

1.1 Incoming goods inspection, transportation and storage

- Make sure that the packaging is undamaged!
 Inform your supplier of any damage to the packaging. Retain the damaged packaging until the matter is settled.
- Make sure that the contents are not damaged!
 Inform your supplier of any damage to the contents. Retain the damaged goods until the matter is settled.
- Check the scope of delivery for completeness by referring to the shipping documents and your order.
- The instrument is to be packaged for storage and transport in a way that protects it from impacts and moisture. The original packaging offers optimum protection. The permissible ambient conditions must also be observed (see 4 Technical data).
- If you have any questions, please contact your supplier or their sales office.

2 SAFETY PRECAUTIONS

Read this instruction manual before commissioning the compressed air meter. Store this instruction manual in a location that is accessible for all users at all times.

2.1 Intended use

The compressed air meter is intended exclusively for use in pipe systems for working compressed air, provided that the calibration certificate does not explicitly allow use with other gases.

WARNING

The structural design allows for operation in pressurized systems up to PN 16 (DN 200 14 bar)

Any use other than that described will compromise the safety of persons and the entire measuring system and is therefore not permitted.

The manufacturer shall accept no liability for damages that occur as a result of improper or inappropriate use or installation.

To prevent damage to the instruments or health risks occurring the measuring units **must never be manipulated** with tools unless expressly defined in this instruction manual.

The compressed air meter may only be operated under the ambient conditions specified in the technical data. Otherwise, inaccurate measurements will occur and instrument malfunctions cannot be ruled out.

To ensure the safety of the user and the functionality of the instruments, the commissioning steps, checks and maintenance work recommended by the manufacturer are to be complied with and carried out.

These instructions do not contain complete detailed information for the sake of transparency. Should you require further information or should a specific problem occur that is not comprehensively handled in the instructions, you can request the required information directly from the manufacturer.

2.2 Installation, commissioning and operation

The compressed air meter was built and tested reliably according to state-of-the-art technology and left the factory in an appropriately safe condition

As the user, you are responsible for compliance with all valid safety regulations, including:

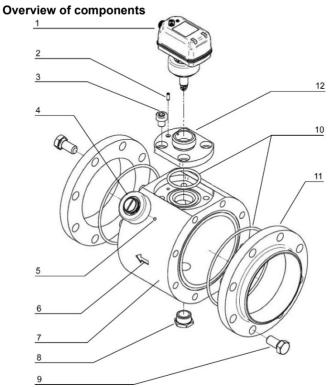
- Installation specifications
- · Local standards and regulations.

The manufacturer has undertaken all necessary measures to ensure safe operation. The user must ensure that the instruments are set up and installed in such a way that their safe use is not affected. This instruction manual contains information and warnings that must be followed by the user in order to ensure safe operation.

 Installation, commissioning, operation and maintenance of the measuring unit may only be performed by trained, authorised personnel.

The personnel must be authorised for the specified tasks by the system operator.

- The authorised personnel must have read and understood this instruction manual and comply with the instructions set out in it.
- Check all connections for correctness before commissioning the complete measuring station.
- Do not commission damaged products and keep these from being inadvertently commissioned. Mark the damaged products as defective.
- Faults at the measuring point are only to be corrected by authorised and specially trained personnel.
- If faults cannot be corrected, the products must be taken out of operation and be safeguarded from inadvertent commissioning.
- Repairs that are not described in this instruction manual may only be carried out directly by the manufacturer or by the service organisation.


2.3 Exclusion of liability

Liability of the manufacturer and its vicarious agents shall exist only in the event of deliberate acts or gross negligence. The extent of liability shall be limited to the value of the respective order placed with the manufacturer. The manufacturer shall accept no liability for damages that occur due to non-observance of the safety instructions or non-compliance with the instruction manual or the operating conditions. Consequential damages are excluded from the liability.

Use the components only in the supplied combination. Due to the design, they are not necessarily compatible with older compressed air meters.

3 DESIGN AND FUNCTION / SCOPE OF DELIVERY

1	Sensor unit	2	Straight pin as alignment aid
3	Hexagon socket head screw M 10	4	Dummy plug
5	Dummy plug holder both sides	6	Direction of flow arrow
7	Measuring station	8	Brass sealing plug
9	Hexagon screw depending on DN	10	Viton O-rings
11	Compac steel welding neck flange	12	Compac stainless steel sealing cone

The equipment is supplied loosely pre-assembled in 2 parts: sensor and station. Also included in the scope of delivery:

· Calibration certificate

3.1 Electric sensor unit

The sensor records the standard volumetric flow of working compressed air based on the calorimetric measuring principle.

This compressed air meter is available with two different output options. In the instruction manual as well as in the configuration code, these two options are marked "F01" and "F02".

Order option F01 indicates that the compressed air meter is equipped with one analog output and one pulse output. With this option, it is not possible to measure the pressure. The process parameters flow rate, consumption quantity and temperature are recorded.

Order option F02 indicates that the compressed air meter is equipped with two analog outputs (dual analog). With this option, it is possible to measure the operating pressure as well. The process parameters flow rate, consumption quantity, temperature and pressure are recorded.

All specifications apply to standard volumetric flow according to DIN ISO 2533 (1013 mbar, 15 °C, 0% relative air humidity).

Observe the general operating conditions for compressed air systems. The air quality of the working compressed air influences the measuring accuracy as follows:

Quality classes according to ISO 8573-1	Measurement errors
1-5-1	± (3% of measured value, + 0.3% of full scale value)
3-4-4	± (6% of measured value + 0.6% of full scale value)

Absolute measuring range

WARNING

The compressed air meter may be used to measure the volume flow of working compressed air with up to 16 bar (> DN 200 14 bar) overpressure.

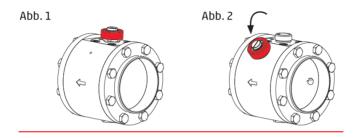
Nominal width	Measuring range	Recording/ display range
DN 65	9 - 2011 m³/h	0 - 2413 m³/h

DN 80	12 - 2769 m³/h	0 - 3323 m³/h
DN 100	20 - 4667 m³/h	0 - 5600 m³/h
DN 125	30 - 7057 m³/h	0 - 8468 m³/h
DN 150	43.05 - 10320 m³/h	0 - 12390 m³/h
DN 200	73 - 17480 m³/h	0 - 20980 m³/h
DN 250	115 - 27590 m³/h	0 - 33110 m³/h

Specifications according to DIN ISO 2533 (15 °C, 1013.25 mbar and 0% rel. humidity).

3.2 Compac sealing cone

The Compac sealing cone makes up the intersection between the measuring station and sensor. The straight pin of the measuring station engages in the one-sided bore of the Compac sealing cone. This is designed with a slot that receives the sensor pin in the downstream direction of flow.


3.3 Compac steel welding neck flange

The connection between the measuring point interface and the pipe system is made via the Compac welding neck flanges.

To avoid a mixed seam in the welded joint to the pipeline, make sure that the Compac flanges are made of steel or stainless steel according to the pipeline.

An alternative to the welding neck flange (V flange) is to fit a Compac threaded flange (G flange).

3.4 Measuring station

The measuring station with Compac welding neck flanges is used to precision-mount the electronic volume flow sensor. The measuring station is welded into pipelines with the Compac welding neck flanges in line with the flow direction (see engraved direction arrow). The nominal width of the measuring station and welding neck flanges must match the nominal pipe width (see 3). To prevent a mixed seam during welding, the material of the parts must also be the same. The compressed air meter is designed for nominal pipe widths from DN 65 to DN 250

3.5 Factory certificate

The sensor is adjusted to the measuring station over its entire measuring range and calibrated at multiple measuring points. The calibration certificate is included in the delivery.

4 TECHNICAL DATA

4.1 Thermal mass flow sensor

The thermal mass flow sensor for compressed air volume flow measurement works independently of the process pressure and media temperature.

Sensor Thermal glass-coated ceramic sensor

Media Compressed air, with special calibration also CO2, N2

Argon

Accuracy Class 1-5-1:

± (3% of measured value + 0.3% of full scale value)

Class 3-4-4:

± (6% of measured value + 0.6% of full scale value)

Air quality according to ISO 8573 - 1.2010;

at media temperature 23 °C

Temperature monitoring ± 0.5 °C (for media flow within the limits of the flow

measuring range)

Repeat accuracy ±1.5% of measured value

Display, operation Colour display 1.44", 128x128 pixels, 2x LED, yellow

Response time 0.1 s

Pressure-tight Up to 16 bar overpressure (> DN 200 up to 14

bar overpressure)

Media temperature -10 °C to + 60 °C

Perm. ambient temp. 0 °C to 60 °C

Maximum permissible

relative humidity < 90% relative humidity

Perm. storage

temperature -20 °C to + 85 °C

Media contact V2A (1.4301), glass-coated ceramic, FKM,

PPS GF40, acrylate

Measuring range pressure** -1 ... 16 bar

Accuracy pressure** 0.05 bar

Housing materials PBT + PC-GF 30, PPS GF40

Protection class IP65, IP 67 / III

Electrical connection M12 x 1 connector, can be loaded to 150 mA,

short-circuit-proof

Power supply 18 to 30 VDC, current consumption < 80 mA*

Readiness delay 1 s

* according to EN 80178 SELV/PELV

** only with order option F02

Output signals

Analog output 4-20 mA, measuring range scaleable

max. load 500 Ω

Current carrying

capacity 2 x 150 mA, short-circuit-proof, protected against

polarity reversal,

EMC DIN EN 60947-5-9

4.2 Accessories

4.2.1 Connecting cable with electric isolation (opt. with electrical isolation)

A suitable connection cable is available as an accessory. The cable is 5 m long and is used for the electrical connection of the transmitter to the customer's control system. The cable is delivered with an appropriate connector for the mass flow sensor on one side and with open cable ends on the other side.

Optionally, a cable with additional electrical isolation is also available; with this cable, the electrical isolation is built into the instrument connector and is used for the galvanic electrical isolation of the sensor output from the electronics connected to it.

4.2.2 Replacement sensor

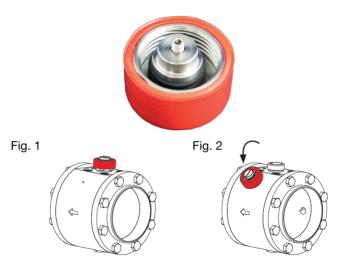
The replacement sensor serves as a replacement in case of damage to or loss of the original mass flow sensor.

When ordering a new sensor, please indicate the certificate number of the old sensor in order to take account of customer-specific measuring conditions directly during calibration.

4.2.3 Calibration options

ISO certificate

An ISO certificate from the manufacturer documents six measuring points including the measuring conditions.


Sensor parameter setting for CO2 and N2

Six measuring points are parametrised with specified nominal widths, standard temperatures and pressures for nitrogen or carbon dioxide, then moved to the test stand where the standard volume is tested.

4.2.4 Dummy plug

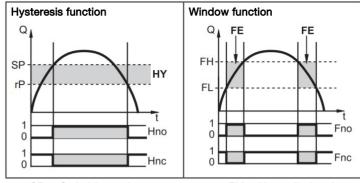
The dummy plug is made of stainless steel and has a bright red plastic protective cap to stop it unintentionally loosening.

It secures the measuring point interface while the sensor is uninstalled, e.g. when changing the sensor for recalibration. For this purpose, it is screwed onto the sealing cone (Fig. 1) when the **line is depressurized**.

4.3 Function

- The flow is monitored by a calorimetric measuring system, the measuring signals are evaluated by the electronics.
 The instrument records the media temperature during flow as an additional process value(F01).
- As an additional process value, the instrument records the pressure during flow (F02).
- The instrument displays the current process values.
- The instrument has extensive self-diagnostic capabilities.
- A simulation mode enables simple commissioning of the sensor.

4.3.1 Processing the measuring signals


The instrument generates 2 output signals according to the parameter settings:

Order option F01	Order option F02
OUT1	OUT1
 Switching signal for flow quantity limit value Switching signal for temperature limit value Switching signal for preset counter Pulse signal for quantity counter OFF (output switched to high impedance) 	Analog signal for flow quantity Analog signal for temperature Analog signal for pressure OFF (output switched to high impedance)
OUT2	OUT2
 Switching signal for flow quantity limit value Switching signal for temperature limit value Switching signal for preset counter Pulse signal for quantity counter Analog signal for flow quantity Analog signal for temperature Input for external counter reset signal (InD) OFF (output switched to high impedance) 	Analog signal for flow quantity Analog signal for temperature Analog signal for pressure OFF (output switched to high impedance)

4.3.2 Switching output (only with order option F01)

OUTx changes its switching status if it is above or below the set switching limits (flow or temperature). Hysteresis or window function can be selected

Example of flow monitoring:

SP = Switching point rP = Reset point HY = Hysteresis

FH = Upper limit value FL = Lower limit value FF = Window

When the hysteresis function is set, the switching point (SP) is defined first, then the reset point (rP), which must be a lower value. If only the switching point is changed, the reset point is changed automatically, the previously set gap remains constant.

When set to the window function, the upper limit value (FH) and lower limit value (FL) have a fixed hysteresis of 0.25% of the full scale value. This keeps the switching status of the output stable if the flow fluctuates very slightly.

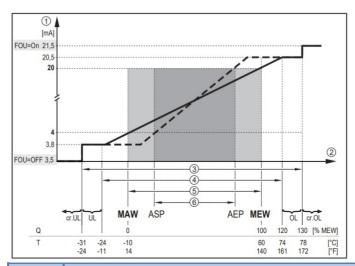
4.3.3 Analog output

The instrument provides an analog signal that is proportional to the flow quantity or the media temperature.

Within the measuring range, the analog signal is between 4 and 20 mA.

The measuring range is scalable:

- [ASPx] determines at which measured value the output signal is 4 mA.
- [AEPx] determines at which measured value the output signal is 20 mA


Minimum distance between **[ASPx]** and **[AEPx]** = 20% of the FS value.

If the measured value is outside the measuring range or if there is an internal error, the current signal indicated in Figure 1 | p. 19 is output.

For measured values outside the display range or in the event of an error, messages are displayed (cr.UL, UL, OL, cr.OL, Err; 🙀 11).

The analog signal in the event of an error is adjustable (\$\tilde{F}\$ 9.5.10):

- **[FOU] = On** determines that the analog signal goes to the upper end value (21.5 mA) in the event of an error.
- **[FOU] = OFF** determines that the analog signal goes to the lower end value (3.5 mA) in the event of an error.
- [FOU] = OU determines that the analog signal behaves as specified by the current parameters in the event of an error.

Fig. 1	Analog output characteristic according to standard IEC 60947-5-7.
1	Analog signal
2	Measured value (flow or temperature)
3	Detection range
4	Display range
(5)	Measuring range
6	Scaled measuring range
Q:	Flow
T:	Temperature
MAW:	Zero/lower range value for non-scaled measuring range. (When a low flow cut-off is set for Q: Signal output starting at MAW + LFC, \$\overline{\overline{\shear}}\$ 4.3.6)
MEW:	Full scale value/upper range value for non-scaled measuring
ASP:	Analog starting point with scaled measuring range
AEP:	Analog end point with scaled measuring range
UL:	Below the display range
OL:	Above the display range
cr.UL:	Below the detection range (error)
cr.OL:	Above the detection range (error)

4.3.4 Consumption quantity monitoring [ImP] (with order option F01)

The instrument has an internal quantity counter (= totaliser). It continuously totals up the consumption quantity and provides this process value on the display

Pulse signals or a switching signal (preset counter) can be used to monitor the consumption quantity.

- **(F)** 4.3.4.3 Consumption quantity monitoring via pulse signals
- **4.3.4.4 Consumption quantity monitoring via preset counter**

4.3.4.1 Meter reading

The current status of the quantity counter can be displayed (\mathfrak{F} 7.1). In addition, the value before the last reset is stored. This value and the time since the last reset can also be displayed (\mathfrak{F} 7.1).

The counter stores the totalled flow quantity every 10 minutes. After a power failure, this value is available as the current meter reading. If a time-controlled reset is set, the elapsed time of the set reset interval is also stored. So the possible loss of data can be a maximum of 10 minutes.

4.3.4.2 Counter reset

The quantity counter can be reset in various ways:

- Manual counter reset (9.3.3)
- Time-controlled counter reset (\$\tilde{\pi}\$ 9.3.4)
- Counter reset using an external signal (9.3.6)

If the quantity counter is not reset by applying one of the above procedures, an automatic reset takes place when the maximum flow quantity that can be displayed is exceeded (overflow).

OUT1 and **OUT2** cannot be used simultaneously for the consumption quantity monitoring

The accuracy of the consumption quantity measurement depends on the accuracy of the flow measurement

4.3.4.3 Consumption quantity monitoring via pulse signals

The output emits a pulse signal each time the flow quantity (pulse value) set under **[ImPS]** is reached.

OUT1 and **OUT2** cannot be used simultaneously for the pulse output.

4.3.4.4 Consumption quantity monitoring via preset counter

The output emits a switching signal when the flow quantity set under **[ImPS]** is reached.

Setting the parameter [rTo] determines whether the flow quantity must be reached irrespective of the time (1) or within a set time (2) for the output to switch

(1)	OFF (9.3.5)	 The output switches when the flow quantity set under [ImPS] is reached. The output remains switched until the counter reset. 	The preset counter is only reset when a manual reset is performed or when the maximum display range has been exceeded (overflow)
(2)	1,2,h 1,2,w 1,2,w (© 9.3.4)	 The output only switches when the flow quantity set under [ImPS] is reached within the set time. The output remains switched until the counter reset. 	■ If the output is not switched, the preset counter is automatically reset when the time period has elapsed and the count starts again (9.3.4 Time-controlled counter reset). ■ If the output is switched, the preset counter is only reset - when a manual reset is performed (9.3.3) or - when the maximum display range is exceeded (overflow).

4.3.5 Measuring value damping

The damping time **[dAP.F]** can be used to set after how many seconds the output signal reaches 63% of the final value in the event of a sudden change in the flow value. The set damping time stabilizes the switching outputs, the analog outputs and the display.

The damping time is added to the response time of the sensor (Technical data).

The signals **[UL]** and **[OL]** (**1**1) are defined taking the damping time into account

4.3.6 Low flow cut-off

With the Low flow cut-off **[LFC]** function, it is possible to suppress small flow quantities. Flows below the LFC value are evaluated by the sensor as a standstill (Q = 0).

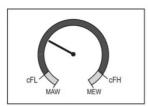
4.3.7 Simulation

This function simulates the process values flow, temperature and meter reading of the totaliser and reviews their signal chain.

The parameter settings **cr.UL**, **UL**, **OL** and **cr.OL** can also be used to simulate process values that lead to an error message or warning (11).

When the simulation is started, the totaliser values are frozen and the simulated totaliser is set to 0. The simulated flow value then has an effect on the simulated totaliser. When the simulation is ended, the initial totaliser values are restored.

The simulation does not have any effect on the currently existing process values. The outputs behave as previously set.


During the simulation, the original totaliser value remains stored without any changes, even if there is a real flow.

During the simulation operation, no error messages of the current real application are available. They are suppressed by the simulation.

4.3.8 Colour of the characters in the display

The colour of the characters in the display can be set via the parameter [coL.x]:

- Permanent definition of the display colour:
- bk/wh (black/white)
- vellow
- areen
- red
- Colour change from red to green or vice versa:
- r-cF (red display colour between the limit values cFL...cFH)
- G-cF (green display colour between the limit values cFL...cFH)

cFL = lower limit value
cFH = upper limit value

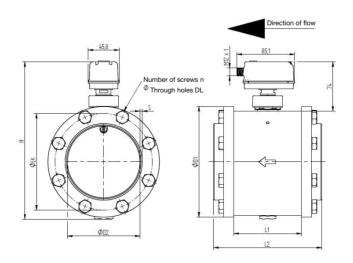
MAW = zero/lower range value
MEW = full scale value/
upper range value

The limit values can be freely selected within the measuring range and are independent of the output function set for **OUT1** and **OUT2**.

5 INSTALLATION

Installation may only be carried out by authorised, qualified staff, e.g. pipeline engineers. Please observe the relevant national regulations.

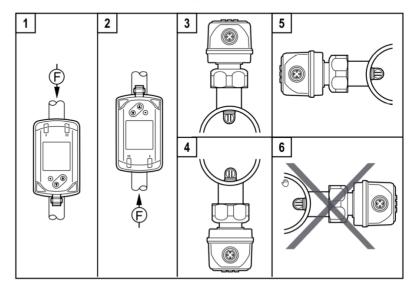
The electrical connections are to be performed by a qualified electrician.


To install and remove the sensor the line must be depressurized. Ensure that the line section cannot be inadvertently used (lockout-tagout).

5.1 Determining the installation point

Please always observe the technical data F see 4.1). The place of installation is to meet the following criteria:

- Medium does not condense at the place of installation, i.e. measuring location only behind a suitable compressed air dryer, which ensures an appropriate pressure dew point. Otherwise the specified measuring accuracy cannot be guaranteed.
- Ambient temperature of maximum +60 °C (note any potential thermal radiation).
- Take account of the inflow and outflow section (see 5.4).
- Take account of the direction of flow (see 5.5).
- · Well accessible with low vibration.
- A min. 200 mm space is needed to remove the sensor.


5.2 Length measurements of the compressed air meter

	KMAT Ø D0x (steel) / D1x	Inch	DN	L1	L2	Ø D1	Ø D2	S	H1	N	ØDL	ØLK
Part no.	(stainless steel)	IIIOII		mm	mm	mm	mm	mm	mm	, iv	mm	mm
0555 6456	D01 / D11	2½ "	65	104	148	125	70,3	2,9	195	16xM12	13	106
0555 6456	D02 / D12	3 "	80	100	160	141	82,5	3,2	210	16xM12	13	118
0555 6456	D03 / D13	4 "	100	100	160	165	107,1	3,6	235	16xM12	13	144
0555 6456	D04 / D14	5 "	125	100	172	205	131,7	4	267	16xM12	13	168
0555 6456	D05 / D15	6"	150	100	180	235	159,3	4,5	296	16xM12	17	200
0555 6456	D06 / D16	8"	200	100	180	290	207,3	5,9	348	24xM12	17	252
0555 6456	D07 / D17	10 "	250	100	196	355	260,4	6,3	408	24xM12	21	315

5.3 Installation position

Do not install the sensor in the crossed-out installation positions shown in the following graphic in point 6. Otherwise, in the event of limited flow, the specified accuracy cannot be maintained.

The arrow shows the direction of flow for the medium.

- **1, 2:** Vertical installation position, any instrument
- **3, 4:** Horizontal installation position, any instrument
- 5: Left installation position, instrument lying sideways
- **6:** Avoid: Right installation position, instrument lying sideways

5.4

Required measuring section

Take account of the required inflow and outflow section in order to achieve the specified measuring accuracy. The inflow section refers to the pipeline length upstream of the compressed air meter and the outflow section to the pipeline length downstream of the compressed air meter, as seen in the direction of flow for the medium

Total measurement section = inflow section + outflow section Inflow route = $15 \times D + B$

D = pipe diameter [mm]

B = additional calming section

Changes to the pipe diameter	B = 5 x pipe diameter
90° elbow	B = 5 x pipe diameter
Two 90° elbows, one level	B = 10 x pipe diameter
Two 90° elbows, two levels	B = 15 x pipe diameter
Valve, slider	B = 35 x pipe diameter

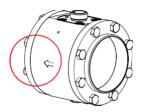
Direction of flow 5.5

Take the direction of flow into account when installing the measuring station. This is indicated by the arrow engraved on the side of the measuring station. The arrow points in the direction in which the medium flows in the pipeline.

56 Installation of the compressed air meter

To avoid a mixed seam in the welded joint to the pipeline. make sure that the Compac flanges are made of steel or stainless steel according to the pipeline.

To install and remove the sensor the line must be depressurized. Ensure that the line section cannot be inadvertently used (lockout-tagout).


A stable stepladder is required for all assembly work carried out up to 2.5 metres off the floor (height of the pipe). A working platform must be provided for work at greater heights. If the measuring point cannot be accessed by a platform, then scaffolding or other equipment must be used to provide a safe working platform.

5.6.1 Installation of the measuring station

- 1. Depressurize the pipe section at the installation point and secure it against accidental reconnection (lockout-tagout).
- 2. Weld the Compac welding neck flanges to the existing pipeline with no torsion, taking national regulations into account, to achieve optimal tightness.

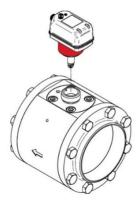
Make sure that the measuring station is installed in the direction of flow - see arrow. Otherwise, there may be sensor measuring inaccuracies.

Screw the measuring station between the flanges according to the direction of flow. Fix the screws in diagonal order for even force distribution.

5.6.2 Installing the sensor in the measuring station

Make sure that the pipeline is depressurized before installing the sensor. Make sure that the Compac sealing cone is always closed either with a sensor or a dummy plug.

- To install the sensor unscrew the dummy plug from the sealing cone and temporarily store it in the holder on the side of the measuring station
- 2. Remove the red protective transportation cap from the tip of the sensor and keep it for the next time you remove the sensor.



3. Install the sensor in the Compac sealing cone of the measuring station.

Take notice of the correct installation position of the sensor.

Due to the design, the sensor can only be screwed onto the sealing cone in one direction (bolt/groove principle).

The M12 connector of the sensor points in the direction of flow. If this is not the case, the measuring station has to be turned between the flanges.

- 4. Fix the sensor to the measuring station with the union nut **and without** tools.
- The mechanical installation of the compressed air meter is now complete.

5.7 Sensor replacement

The removal of the mounted sensor may be necessary for maintenance, cleaning and calibration purposes.

Never remove the sensor or the dummy plug from the sealing cone when the line is under pressure – this may be life-threatening.

- Remove the electrical connecting cable by unscrewing the connector from the sensor by hand. Protect the connector from contamination and moisture.
- 2. Remove the sensor **without tools** from the measuring station pulling it up and out vertically.
- 3. Mount the dummy plug ($\ \$ see 3.4) on the Compac sealing cone.
- 4. Protect the sensor tip with the red protective transportation cap.

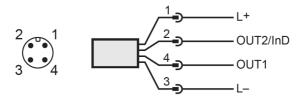
5.8 Electrical connection

Disconnect the system from the power supply when connecting.

The instrument may only be installed by a qualified electrician. Follow the national and international regulations regarding the installation of electrical engineering systems.

The voltage supply is to be laid out in accordance with EN50178, SELV, and PELV.

If you are connecting the sensor directly or using a 4-wire connecting cable, proceed as set out in 5.8.1.


If you have a potential-free 5-wire connection cable, proceed as set out in 5.8.2.

5.8.1 4-wire pin assignment

If you are using the standard connection, the following pin assignment applies to the connection cable or the pin assignment directly on the sens or.

Pin assignment with specification F01

Pin Nr.	Wire colour	Assignment
1	Brown	+L (1830 V DC)
2	Green	OUT2 – Analog signal, pulse, switching signal
3	Yellow	0 V DC (GND)
4	White	OUT1 – Pulse, switching signal

Pin assignment with specification F02

Pin no.	Wire colour	Assignment
1	Brown	+L (1830 V DC)
2	Green	OUT2 – Analog signal
3	Yellow	0 V DC (GND)
4	White	OUT1 – Analog signal

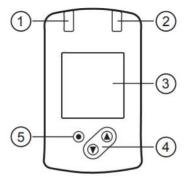
5.8.2 5-wire pin assignment (accessory) (with order option F01)

If the optional connecting cable for electrical isolation is used (**F** see 4.2.2), then the following assignments apply.

Pin no.	Wire colour	Assignment
1	Brown	+ L (19 to 30 V DC) sensor supply
2	Pink	+ potential-free pulse output (collector) OUT1
3	White	- potential-free pulse output (emitter) OUT1
4	Green	OUT2
5	Black	0 V DC (GND)

The potential-free pulse output OUT1 is specified for this connecting cable as follows:

Line type	LiYCY
Length	5 m
Switching capacity	500 mA
Max. switching voltage	36 V
Min. switching voltage	5 V
Switch contact resistance	0.21 Ω
Insulation voltage	5.3 kV
Protected against polarity	Yes


6 OPERATION

Thermal mass flow sensor

Familiarize yourself with the operation and programming of the sensor. The sensor is calibrated ex factory and provided with default settings for each nominal width

6.1 Operation and display elements

The following illustration shows the operating and display unit of the sensor from above.

1 and 2: Switching status LEDs

- LED 1 = switching status OUT1 (lights up if output 1 is switched)
- LED ② = switching status OUT2 (lights up if output 2 is switched)

3: TFT display

- Display of current process values (flow quantity, temperature, totaliser)
- Display of the parameters and parameter values

4: [▲] and [▼] key

- Select parameter
- Change parameter value (press and hold key)
- Change process value display in normal operating mode (RUN mode)
- Lock / Unlock (kevs pressed simultaneously > 10 seconds)

5: [●] key = Enter

- Change from RUN mode to the main menu
- Change to setting mode
- Acknowledge the set parameter value

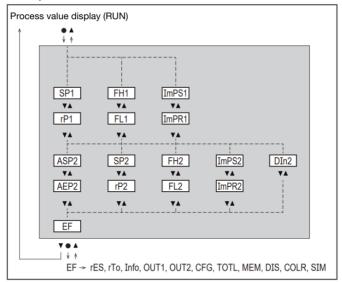
Display illumination:

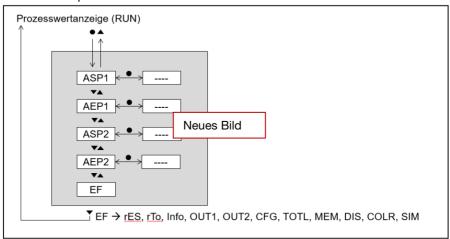

- Instrument temperature > 70 °C: Brightness automatically reduced
- Instrument temperature ≥ 100 °C: Display automatically switched off

7 MENU

7.1 Process value display (RUN)

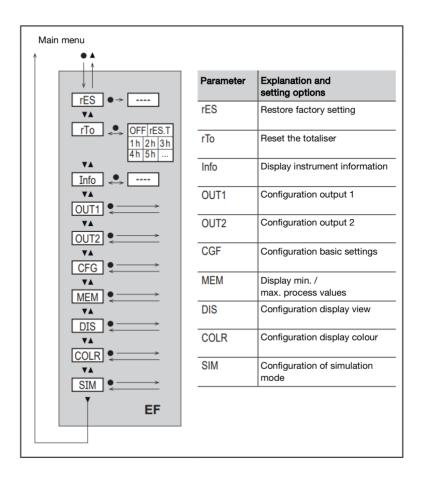
It is possible to switch between three process value displays during operation.


- Press the [▲] or [▼] key
- The display switches between the standard indication and two other views
- After 30 seconds, the instrument switches back to the standard display.

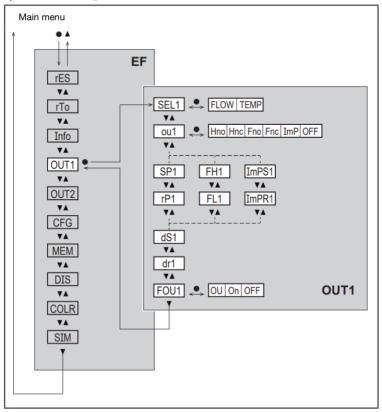

- 1: Standard display as set under [diS.L]
- 2: Complete overview of all process values
- 3: Overview of totaliser values

7.2 Main menu

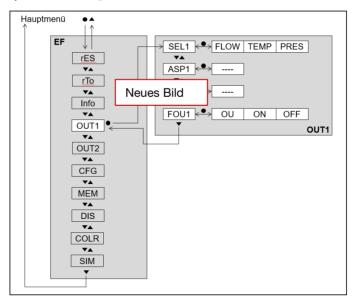
With specification F01:


With specification F01:

Explanation of the parameters \bigcirc 7.4 Submenu **OUT1** and \bigcirc 7.5 Submenu **OUT2**


The displayed parameters change when the factory setting in submenu **OUT1** and **OUT2** is changed.

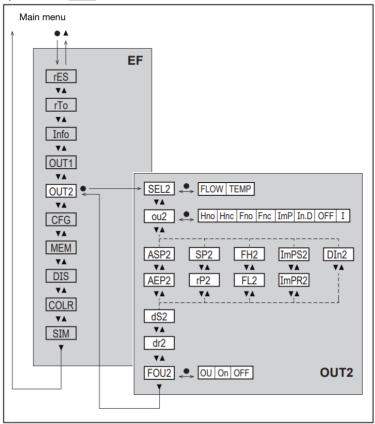
7.3 Extended functions EF



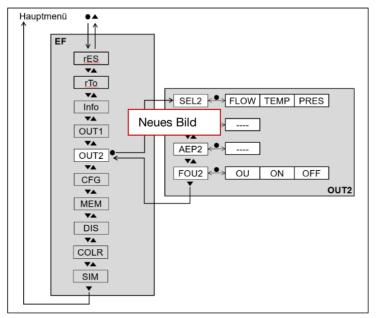
7.4 Submenu OUT1

Specification F01:

Specification F02:



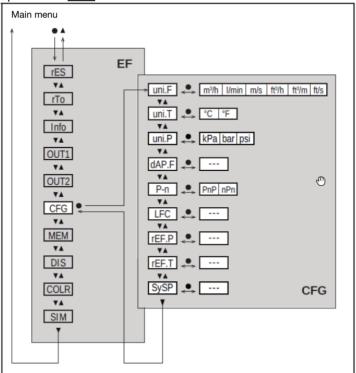
Parameter	Explanation and setting options		
SEL 1	Standard measurement parameter for evaluation by OUT1: FLOW or TEMP		
ou1	Output function for OUT1: Flow: Hno, Hnc, Fno, Fnc, ImP Temperature: Hno, Hnc, Fno, Fnc Hno = Switching signal with hysteresis function normally open Hnc = Switching signal with hysteresis function normally closed Fno = Switching signal with window function normally open Fnc = Switching signal with window function normally closed Imp = Consumption quantity monitoring (totaliser function) OFF = Output OFF (high impedance)		
SP1	Switching point for OUT1		
rP1	Reset point for OUT1		
FH1	Upper limit value for OUT1		
FL1	Lower limit value for OUT1		
ImPS1	Pulse value = flow quantity at which 1 pulse is delivered.		


ImPR1	Configuration of OUT1 for consumption quantity monitoring: YES (pulse signal), no (switching signal).			
dS1	Switching delay on OUT1.			
dr1	Reset delay on OUT1.			
FOU1	Response of OUT1 in the event of an internal error:			
	OU = output reacts as normal			
	On = output switches ON / analog signal goes to 21.5 mA			
	OFF = output switches OFF / analog signal goes to 3.5 mA			
_/				
	FOU1 is not available if ou1 = ImP was selected.			
Note				
Note				
Parameter	Explanation and setting options (F02)			
	Explanation and setting options (F02) Standard measurement parameter for evaluation by OUT1: Flow or TEMP (temperature) or PRES (pressure)			
Parameter	Standard measurement parameter for evaluation by OUT1:			
Parameter SEL1	Standard measurement parameter for evaluation by OUT1: Flow or TEMP (temperature) or PRES (pressure)			

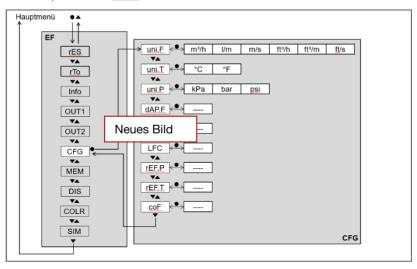
7.5 Submenu OUT2

Specification F01:

Specification F02:

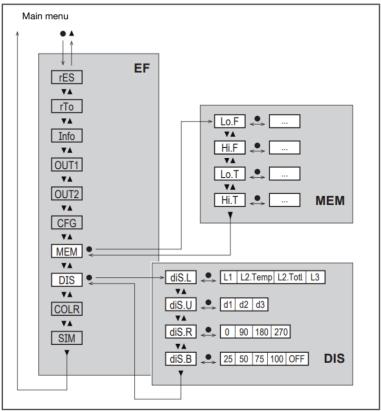

The displayed parameters change when the factory settings are changed in the **OUT2** submenu.

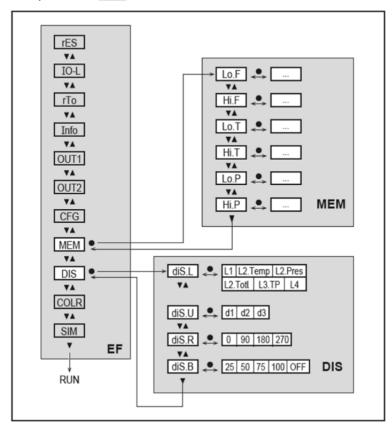
Parameter	Explanation and setting options		
SEL 2	Standard measurement parameter for evaluation by OUT2: FLOW or TEMP		
ou2	Output function for OUT1: Flow: Hno, Hnc, Fno, Fnc, I, ImP Temperature: Hno, Hnc, Fno, Fnc, I Hno = Switching signal with hysteresis function normally open Hnc = Switching signal with hysteresis function normally closed Fno = Switching signal with window function normally open Fnc = Switching signal with window function normally closed I = Analog signal 4 to 20 mA In.D = Input for external counter reset signal Imp = Consumption quantity monitoring (totaliser function) OFF = Output OFF (high impedance)		
ASP1	Analog starting point for OUT2		


AEP1	Analog end point for OUT2			
SP2	Switching point for OUT2			
rP2	Reset point for OUT2			
FH2	Upper limit value for OUT2			
FL2	Lower limit value for OUT2			
ImPS2	Pulse value = flow quantity at which 1 pulse is delivered.			
ImPR2	Configuration of OUT2 for consumption quantity monitoring: YES (pulse signal), no (switching signal).			
dS1	Switching delay on OUT1.			
dr1	Reset delay on OUT1.			
FOU2	Response of OUT2 in the event of an internal error:			
	OU = output reacts as normal			
	On = output switches ON / analog signal goes to 21.5 mA			
	OFF = output switches OFF / analog signal goes to 3.5 mA			
Note	FOU2 is not available if ou2 = ImP was selected.			
Parameter	Explanation and setting options (F02)			
SEL2	Standard measurement parameter for evaluation by OUT2: Flow or TEMP (temperature) or PRES (pressure)			
ASP2	Analog starting point for OUT2			
AEP2	Analog end point for OUT2			
FOU2 Response of OUT2 in the event of an internal error: OU = analog signal goes to 21.5 mA in the event of an erro pressure measurement and to 3.5 mA in the event of error in flow measurement or temperature measurem On = analog signal goes to 21.5 mA OFF= analog signal goes to 3.5 mA				

7.6 Submenu CFG

Specification F01:


Specification F02:

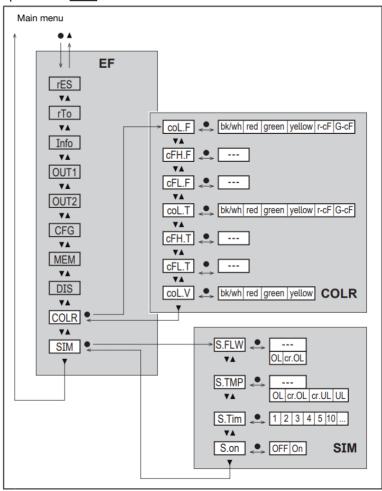

Parameter	Explanation and setting options		
uni.F	Standard unit of measurement for flow		
uni.T	Standard unit of measurement for temperature		
uni.P	Standard unit of measurement for pressure (F02)		
dAP.F	Measured value damping for flow		
dAP.P	Measured value damping for pressure (F02)		
P-n	Switching logic for outputs (F01)		
LFC	Low flow cut-off		
rEF.P	Standard pressure to which measured and display values for flow refer.		
rEF.T	Standard temperature to which the measured and display values for flow refer.		
SySP	Process pressure setting for the pressure compensation (F01)		
coF	Zero point calibration for pressure measurement. The internal measured value 0 is shifted by this amount (F02) Specification		

7.7 Submenu MEM, DIS

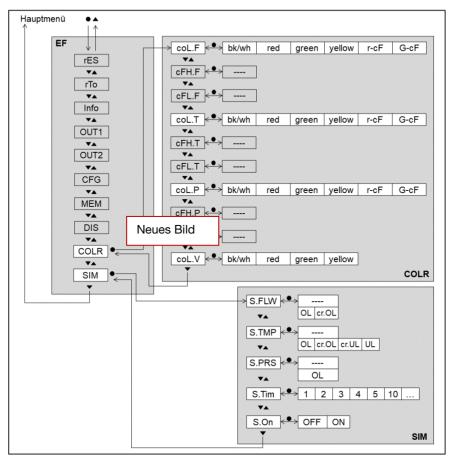
Specification F01:

Specification F02:

Explanation submenu MEM


Parameter	Explanation and setting options	
Lo.F	Minimum value of the flow volume measured in the process	
Hi.F	Maximum value of the flow volume measured in the process	
Lo.T	Minimum value of the temperature measured in the process	
Hi.T	Maximum value of the temperature measured in the process	
Lo.P	Minimum value of the pressure measured in the process (F02)	
Hi.P	Maximum value of the pressure measured in the process (F02)	

Explanation submenu DIS


Parameter	Explanation and setting options		
	Standard process value display		
	L1 = current process value for flow		
diS.L (F01)	L2.Temp = current process value for flow and temperature		
(FU1)	L2.Totl. = current process value for flow and totaliser		
	L3 = current process value for flow and temperature and totaliser		
	Standard process value display		
	L1 = current process value for flow		
	L2.Temp = current process value for flow and temperature		
diS.L	L2.Press = current process value for flow and pressure		
(F02)	L2.Totl. = current process value for flow and totaliser		
	L3.TP = current process value for flow, temperature and		
	pressure 1.4 = current process value for flow temperature pressure		
	L4 = current process value for flow, temperature, pressure and totaliser value		
	Display refresh rate		
diS.U	d1 = High		
4.0.0	d2 = Medium		
	d3 = Low		
diS.R	Display rotation: 0°, 90°, 180°, 270°		
diS.B	Display brightness: 25%, 50%, 75%, 100%, OFF		
uio.b	Measurement display in RUN mode switched off		

7.8 Submenu COLR, SIM

Specification F02:

Specification F02:

Explanation submenu COLR

The displayed parameters change when the factory settings in submenu **OUT1** and **OUT2** are changed.

Parameter	Explanation and setting options			
coL.F	Colour of the characters in the display for the flow value			
cFH.F	Upper limit value for the colour change for flow measurement			
dFL.F	Lower limit value for the colour change for flow measurement			
coL.T	Colour of the characters in the display for the temperature value			
cFH.T	Upper limit value for the colour change for temperature			
cFL.T	Lower limit value for the colour change for temperature			
coL.P	Colour of the characters on the display for the pressure value			
coL.P	Upper limit value for the colour change for pressure measurement			
cFL.P	Lower limit value for the colour change for pressure measurement			
coL.V	Colour of the characters in the display for the totaliser value			
bk/wh	Permanently black/white			
yellow	Permanently yellow			
green	Permanently green			
red	Permanently red			
r-cF	Display colour between limit values cFLcFH red, outside green			
G-cF	Display colour between limit values cFLcFH green, outside red			

Explanation submenu SIM

Parameter	Explanation and setting options		
S.FLW	Simulated flow value		
S.TMP	Simulated temperature value		
S.PRS	Simulated pressure value (F02)		
cr.UL	Measured value below the detection range $ ightarrow$ error message		
UL	Measured value below the display range $ ightarrow$ warning		
OL	Measured value above the display range $ ightarrow$ warning		

cr.OL	L Measured value above the detection range → error message	
S.Tim	Simulation duration in minutes	
S.On	Simulation duration_ OFF,On	

8 COMMISSIONING

After power-on and expiry of the readiness delay time of approx. 1 second, the instrument is in RUN mode (=normal operating mode). It carries out its measurement and evaluation functions and generates output signals according to the set parameters.

- During the readiness delay time, the outputs are switched as programmed:
 - ON with normally open function (Hno / Fno)
 - OFF with normally closed function (Hnc / Fnc)
 - OFF for consumption quantity monitoring (ImP)
- If output 2 is configured as an analog output, the output signal is at 20 mA during the readiness delay time.

9 PARAMETER SETTING

WARNING

CAUTION!

The housing can become very hot

- Risk of burns
- Do not touch the instrument with your hands
- Use another object (e.g. a ballpoint pen) to implement settings on the instrument.

Parameters can be set before installation and commissioning of the instrument or during operation. If you change parameters during operation, this will affect the functioning of the system.

• Make sure that there are no malfunctions in the system

Note

During parameter setting, the instrument remains in the operating mode. It continues to carry out its monitoring functions with the existing parameters until the parameter setting has been completed.

9.1 General parameter setting

1.	Change from RUN mode to the main menu	[•]
2.	Select the required parameter	[▲] or [▼]
3.	Change to setting mode	[•]
4.	Change the parameter value	[▲] or [▼] > 1s
5.	Acknowledge the set parameter value	[•]
6.	Return to RUN mode	>30 seconds (timeout)

Note

If [Lock via system] is displayed, the sensor is permanently locked via software. This lock can only be removed with service software.

9.1.1 Select submenu

- 1. Press [•] to switch from the process value display to the main menu.
- 2. Press [▼] to select the menu EF and press [•].
- 3. Press [▼] to select the submenu and press [•].

9.1.2 Change to the process value display (RUN mode)

There are 2 options:

- 1. Wait 30 seconds (\$\varphi\$ 9.1.4 Timeout).
- 2. Press [▲] or [▼] to go to the end of the menu and switch to the next higher menu.

9.1.3 Lock / unlock

The instrument can be locked electronically to prevent unintentional settings. On delivery: not locked.

Locking:

- Make sure that the instrument is in normal operating mode.
- Press [▲] and [▼] simultaneously for 10 seconds until [♠ Reset menu lock] is displayed.

During operation: [Lock via key] is displayed if you try to change parameter values.

Unlocking:

- Make sure that the instrument is in normal operating mode.
- Press [▲] and [▼] simultaneously for 10 seconds until [♠ Reset menulock] is displayed

9.1.4 Timeout

If no key is pressed for 30 seconds while setting a parameter, the instrument returns to the operating mode with the value unchanged.

9.2 Settings for flow monitoring

9.2.1 Limit value monitoring OUT1 or OUT2 / hysteresis function (with order option F01)

	Menu OUTx:
Select [SELx] and set FLOW	[SELx]
 Select [oux] and adjust the switching signal: Hno = hysteresis function / normally open Hnc = hysteresis function / normally closed 	[oux]
 Select [SPx] and set the value at which the output switches. 	[SPx]
Select [rPx] and set the value at which the output resets.	[rPx]

9.2.2 Limit value monitoring OUT1 or OUT2 / window function (with order option F01)

	Menu OUTx:
Select [SELx] and set FLOW	[SELx]
 Select [oux] and adjust the switching signal: Fno = window function / normally open Fnc = window function / normally closed 	[oux]
 Select [FHx] and set the value at which the output switches. 	[FHx]
Select [FLx] and set the value at which the output resets.	[FLx]

9.2.3 Analog signal flow OUTx*

	Menu OUTx:
Select [SELx] and set FLOW	[SELx]
Select [oux] and set analog signal:I (4 to 20 mA)	[oux]
 Select [ASPx] and set the value at which 4 mA is provided. 	[ASPx]
 Select [AEPx] and set the value at which 20 mA is provided. 	[AEPx]

^{*}With order option F01 - OUT2 With order option F02- OUT 1 & OUT 2

9.3 Settings for consumption quantity monitoring

9.3.1 Quantity monitoring by pulse signal OUT1 and OUT2 (with order option F01)

	Menu OUTx:
Select [SELx] and set FLOW	[SELx]
Select [oux] and adjust the pulse output: ImP	[oux]
 Select [ImPSx] and set the pulse value (= flow quantity at which a pulse is provided): 1. Press [▲] or [▼] to select the setting range. 2. Press [●] briefly to confirm the setting range. 3. Press [▲] or [▼] to set the required numerical value. 4. Press [●] briefly to apply the value. 	[ImPSx]
Select [ImPRx] and set YES.	[ImPRx]

9.3.2 Quantity monitoring by preset counter OUT1 or OUT2 (with order option F01)

	Menu OUTx:
Select [SELx] and set FLOW	[SELx]
Select [oux] and adjust the pulse output: ImP	[oux]
Select [ImPSx] and set the flow quantity at which output x switches.	[ImPSx]
Select [ImPRx] and set NO.	[ImPRx]

9.3.3 Manual counter reset

	Menu EF:
Select [rTo] and set rES.T.	[rTo]
→ The totaliser is reset to zero	

9.3.4 Time-controlled counter reset

	Menu EF:
 Select [rTo] and set the required value (intervals of hours, days or weeks). 	[rTo]
→ The totaliser is automatically reset with the value now set.	

9.3.5 Deactivating counter reset

	Menu EF:
Select [rTo] and set OFF.	[rTo]
→ The totaliser is only reset after the overflow.	

9.3.6 Counter reset using an external signal (with order option F01)

	Menu OUT2:
Select [rTo] and set In.D.	[ou2]
Select [Din2] and set counter reset signal:	[Din2]
HIGH = reset for high signal	
LOW = reset for low signal	
+EDG = reset for rising edge	
-EDG = reset for falling edge	
→ Totaliser is reset to zero.	

9.4 Settings for temperature monitoring

9.4.1 Limit value monitoring OUT1 or OUT2 / hysteresis function (with order option F01)

	Menu OUTx:
Select [SELx] and set TEMP	[SELx]
Select [oux] and adjust the switching signal:	[oux]
- Hno = hysteresis function / normally open	
Hnc = hysteresis function / normally closed	
 Select [SPx] and set the value at which the output switches. 	[SPx]
Select [rPx] and set the value at which the output resets.	[rPx]

9.4.2 Limit value monitoring OUT1 or OUT2 / window function (with order option F01)

	Menu OUTx:
Select [SELx] and set TEMP	[SELx]
 Select [oux] and adjust the switching signal: Fno = window function / normally open Fnc = window function / normally closed 	[oux]
 Select [FHx] and set the value at which the output switches. 	[FHx]
Select [FLx] and set the value at which the output resets.	[FLx]

9.4.3 Analog signal temperature OUT2

	Menu OUTx:
Select [SELx] and set Temp	[SELx]
Select [oux] and select analog signal: I (4 to 20 mA)	[oux]
Select [ASPx] and set the value at which 4 mA is	[ASPx]
 Select [AEPx] and set the value at which 20 mA is provided. 	[AEPx]

9.5 Settings for pressure monitoring

9.5.1 Analog signal pressure OUTx (with order option F02)

▶	[SELx] wählen und PRES einstellen.	Menü OUTx:
▶	[ASPx] wählen und Wert einstellen, bei dem 4 mA ausgegeben werden.	[SELX]
		[ASPx]
	werden.	[AEPx]

9.6 User settings (optional)

9.6.1 Standard display (with order option F01)

				Menu DIS:
	•	Select [diS	.L] and set process value display:	[diS.L]
		L1 = curre	ent process value for flow	
		L2.Temp	= current process value for flow and temperature	
		L2.Totl	= current process value for flow and totaliser	
		L3	= current process value for flow and temperature and totaliser	
	•	Select [diS	.U] and set the display refresh rate:	[diS.U]
		d1 = High		
		d2 = Mediu	m	
		d3 = Low		
•		Select [diS 90°, 180°, 2	.R] and set the orientation of the display: 0°, 270°	[diS.R]
E		Select [diS	.B] and set the brightness of the display:	[diS.B]
		25%, 50%,	75%, 100%	
		off in the or	energy-saving mode. The display is switched perating mode. Error messages are shown display is deactivated. Activate the display by ny key.)	

9.6.2 Standard display (with order option F02)

•	- L1 - L2.Temp - L2.Pres	= aktueller Prozesswert für Durchfluss und Temperatur = aktueller Prozesswert für Durchfluss und Druck = aktueller Prozesswert für Durchfluss und Totalisator	Menü DIS: [diS.L] [diS.U] [diS.R] [diS.B]
	2.	und Druck und aktueller Totalisatorwert	
•	diS.U] wäh d1 = High d2 = Med d3 = Low	ium	
•	(diS.R] wäh	len und Ausrichtung des Displays einstellen: °. 270°	
•		len und Helligkeit des Displays einstellen: , 75 %, 100 %	
	ausgeschal	= Energiesparmodus. Die Anzeige ist im Arbeitsbetrieb tet. Fehlermeldungen werden auch bei ausgeschaltetem lezeigt. Displayaktivierung über beliebigen Tastendruck.)	

9.6.3 Standard unit of measurement for flow

	Menu CFG
 Select [uni.F] and set the unit of measurement for standard display (\$\mathcal{E}\$ 7.1): 	[uni.F]
l/min, m³/h, m/s, ft³/m,ft³/h, ft/s	
The consumption quantity (meter reading) is automatically displayed with the unit of measurement that provides the highest accuracy.	

9.6.4 Standard unit of measurement for temperature

	Menu CFG
Select [uni.T] and set the unit of measurement for standard display (7.1): C and F	[uni.T]

9.6.5 Standard unit of measurement for pressure

 	▶ [uni.P] wählen und Maßeinheit für Standard-Anzeige (→ 7.1) einstellen:	Menü CFG:
L	kPa, bar, psi.	[uni.P]

9.6.6 Measuring value damping

	Menu CFG
 Select [dAP.F] and set damping constant in seconds: (τ value 63%) 	[dAP.F]

9.6.7 Switching logic for outputs

		Menu CFG	
•	Select [P-N] and set PnP or nPn.	[P-N]	

9.6.8 Low flow cut-off

	Menu CFG
Select [LFC] and set the limit value below which a flow is evaluated as a standstill.	[LCF]

9.6.9 Zero point calibration pressur

	[coF] wählen und Wert in bar einstellen.	Menü CFG:	
>		[coF]	

9.6.10 Standard conditions

	Menu CFG
Select [rEF.P] and set standard pressure.	[rEF.P]
Select [rEF.T] and set standard temperature	re. [rEF.T]

9.6.11 Colour of the characters in the display

 ▶ [coL.F] für Durchfluss oder [coL.T] für Temperatur oder [col.P] für Druck wählen und Schriftfarbe des Prozesswerts in der Standard-Anzeige einstellen: bk/wh = dauerhaft schwarz/weiß yellow = dauerhaft gelb green = dauerhaft grün red = dauerhaft rot r-cF = Display-Farbe rot zwischen Grenzwerten cFLcFH, außerhalb Farbwechsel nach grün. G-cF = Display-Farbe grün zwischen Grenzwerten cFLcFH, außerhalb Farbwechsel nach rot. ▶ [cFH.x] und [cFL.x] wählen und Grenzwerte für Farbfenster einstellen: cFH.F = oberer Grenzwert für Durchfluss cFL.F = unterer Grenzwert für Durchfluss cFH.T = oberer Grenzwert für Temperatur cFH.P = oberer Grenzwert für Druck cFH.P = oberer Grenzwert für Druck cFL.P = unterer Grenzwert für Druck cFL.P = unterer Grenzwert für Druck puterer Grenzwert für Totalisator einstellen: bk/wh = dauerhaft schwarz/weiß yellow = dauerhaft gelb green = dauerhaft grün red = dauerhaft rot dauerhaft rot dauerhaft rot dauerhaft rot preen = dauerhaft rot dauerhaft rot dauerhaft rot dauerhaft rot dauerhaft rot dauerhaft rot	Menü COLR: [coL.x] [cFH.x] [cFL.x] [coL.V]

^{*} only with order option F02

9.6.12 Switching/reset delay

	Menu OUTx:
 Select [dSx] and set the delay for switching Outx in seconds. 	[dSx]
 Select [drx] and set the delay for resetting OUTx in seconds. 	[drx]

9.6.13 Error behaviour of the outputs (F02)

▶	► [FOUx] wählen und Fehlerverhalten einstellen:					
	- On - OFF - OU	 = Das Analogsignal geht auf den oberen Fehlerwert (→ 3.2). = Das Analogsignal geht auf den unteren Fehlerwert (→ 3.2). = Das Analogsignal geht im Fehlerfall bei der Druckmessung auf 21,5 mA und im Fehlerfall bei der Durchflussmessung oder Temperaturmessung auf 3,5 mA (→ 3.2). 	[FOUx]			

9.6.14 Error behaviour of the outputs (F01)

			Menu OUT1:
•	Selec On	t [FOU1] and set error behaviour for output 1: = Output 1 switches ON in the event of an error.	[FOU1]
	OFF	= Output 1 switches OFF in the event of an error.	
	OU	 Output 1 switches irrespective of the error as defined with the parameters 	
			Menu OUT2:
•	Selec	t [FOU2] and set error behaviour for output 2:	[FOU2]
	Switch	ning output:	
	On	= Output 2 switches ON in the event of an error.	
	OFF	= Output 2 switches OFF in the event of an error.	
	OU	= Output 2 switches irrespective of the error as defined with the parameters	
	Analo	g output:	
	On	= The analog signal goes to the upper error value (
	OFF	= The analog signal goes to the lower error value (
	OU	= The analog signal corresponds to the measured value.	

If **[ou]** = Imp (consumption quantity monitoring) was selected, the parameter **[FOUx]** is not available. The pulses are provided irrespective of the error.

9.6.15 Restore factory settings

	Menu EF:
Select [rES]	[rES]
Briefly press [•]	
 Press and hold [▲] or [▼]. 	
→ [] is displayed.	
■ Briefly press [●].	
→ The instrument carries out a reboot.	

13 Factory settings. We recommend noting down your own individual settings in this table before implementing this function.

9.7 Diagnostic functions

9.7.1 Read min/max values

 ▶ [Lo.x] oder [Hi.x] wählen um den jeweils höchsten oder niedrigsten gemessenen Prozesswert anzuzeigen:	Menü MEM: [Lo.x] [Hi.x]
Speicher löschen: ▶ [Lo.x] oder [Hi.x] wählen. ▶ [▲] und [▼] gedrückt halten. > [] wird angezeigt. ▶ Kurz [•] drücken.	
Es ist sinnvoll, die Speicher zu löschen, sobald das Gerät erstmals unter normalen Betriebsbedingungen arbeitet.	

10 OPERATION

The process values to be permanently displayed can be preset (\mathcal{F} 9.5.1 Standard display). A standard unit of measurement can be defined for the flow measurement and the temperature measurement (\mathcal{F} 9.5.2 and \mathcal{F} 9.5.3).

In addition to the preset standard display, the display can be changed by pressing $[\blacktriangle]$ or $[\blacktriangledown]$ (\lnot) 7.1 Process value display (RUN).

11 TROUBLESHOOTING

The instrument has extensive self-diagnostic capabilities. It monitors itself automatically during operation.

Warnings and error states are displayed, even when the display is switched off

The status signals are classified according to Namur recommendation NF107

If several diagnostic events occur simultaneously, only the diagnostic message from the event with the highest priority is displayed.

If one process value fails, the other process values continue to be available.

ERROR	ERROR	 \otimes	Instrument faulty / malfunction	FOU	Replace instrument
Aus	Off	 \otimes	Supply voltage too low	FOU	Check supply voltage. Change [diS.B] setting (9.5.1)
PArA	Param eter Error	 \otimes	Parameter setting outside the valid range.	FOU	Repeat parameter setting.
ERROR	Flow Error	 \otimes	Error in flow measurement	FOU	Check flow measurement. Replace instrument.

Process value line	Title line	Status LED	Туре	Description	Output response	Troubleshooting
ERROR	Temp. Error		\otimes	Error in temperature measurement	FOU	Check temperature measurement. Replace instrument
cr.OL	Critical over limit		\otimes	Critical exceeding of the detection range	FOU	Check flow range / temperature range
cr.UL	Critical under limit		\otimes	Critical undershooting of the detection range*	FOU	Check temperature range
	Short circuit OUT1/ OUT2	OUT1 OUT2	A	Short circuit OUT1 and OUT2		Check switching output OUT1 and OUT2 for short circuit or excessive current
	Short circuit OUT1	OUT1	À	Short circuit OUT1		Check switching output OUT1 for short-circuit or excessive
	Short circuit OUT2	OUT2	A	Short circuit OUT2		Check switching output OUT2 for short-circuit or excessive
OL	Over limit		À	Detection range* exceeded	OU	Check flow range / temperature range
UL	Under limit		À	Detection range* not reached	OU	Check flow range / temperature range
Lock via key			A	Setting button on instrument locked, parameter change rejected.	OU	Unlock instrument

*Detection range 🗐 4.3.3 Fig. 1

 \otimes Error In the event of an error, the outputs react according to the setting under [FOU1] and [FOU2] (\mathbb{F} 9.5.10)

Marning

LED flashes

LED flashes rapidly

12 MAINTENANCE, REPAIR AND DISPOSAL

As a rule, no maintenance measures are necessary.

Define regular calibration intervals according to process requirements.
 Recommendation: every 12 months.

The instrument may only be repaired by the manufacturer.

 After use, dispose of the instrument in an environmentally friendly manner in accordance with the applicable national regulations.

13 CONFIGURATION AND FACTORY SETTINGS

13.1 Configuration of OUx on delivery

Menu	Parameter	Configuration	User setting
OUT1	SEL1	FLOW	
	OU1	ImP	
OUT2	SEL2	FLOW	
	OU2	I	

Nominal width	ImPS1	ASP2 AEP
DN65	1 m ³	0 2000 m ³ /h
DN80	1 m ³	0 2750 m ³ /h
DN100	10 m ³	0 4400 m³/h
DN125	10 m ³	0 7000 m ³ /h
DN150	10 m ³	0 10000 m ³ /h
DN200	10 m ³	0 17400 m³/h
DN250	10 m ³	0 27500 m ³ /h

13.2 Factory setting

Menu	Parameter	Factory setting	User setting
EF	rTo	OFF	
OUT1	SEL1	FLOW	
	ou1	Hno	
	SP1/FH1	20%	
	rP1/FL1	19%	
	ImPS1	0.0001 m ³	
	ImPR1	YES	
	dS1	0	
	Dr1	0	
	FOU1	OFF	
OUT2	SEL2	FLOW	
	ou2	1	
	ASP2	0%	
	AEP2	100%	
	SP1/FH1	40%	
	rP1/FL1	39%	
	ImPS2	0.0001 m ³	
	ImPR2	YES	
	Dln2	+EDG	
	dS1	0	
	dr1	0	
	FOU2	OFF	
CFG	uni.F	m³/h	
	uni.T	°C	
	dAP.F	0,6 s	
	P-n	PnP	
	LFC	0,13%	
	rEF.T	15 °C	
	rEF.P	1013 mbar	

Menu	Parameter	Factory setting	User setting
DUS	diS/L	L3	
	diS/U	d3	
	diS/R	0	
	diS/B	75	
COLR	coL.F	bk/wh	
	coL.T	bk/wh	
	coL.V	bk/wh	

The process values refer to the final value of the measuring range (the full scale value, MEW).

The parameter settings for the sensor may deviate from the factory settings on delivery depending on the nominal width and the order.

Note

Specification F02:

Menü	Parameter	Werkseinstellung	Benutzer- Einstellung
EF	rTo	OFF	
OUT1	SEL1	TEMP	
	ASP1	0 %	
	AEP1	100 %	
	FOU1	OFF	
OUT2	SEL2	FLOW	
	ASP2	0 %	
	AEP2	100 %	
	FOU2	OFF	

Menü	Parameter	Werkseinstellung	Benutzer- Einstellung
CFG	uni.F	m³/h	
	uni.T	°C	
	uni.P	bar	
	dAP.F	0,6 s	
	dAP.P	0,06 s	
	LFC	0555 6451 0,1 m³/h 0555 6452 0,3 m³/h 0555 6453 0,5 m³/h 0555 6454 2,0 m³/h	
	rEF.P	1013 mbar	
	rEF.T	15 °C	
	coF	0	
DIS	diS.L	L3.TP	
	diS.U	d3	
	diS.R	0	
	diS.B	75	
COLR	coL.F	bk/wh	
	coL.T	bk/wh	
	coL.P *	bk/wh	_
	coL.V	bk/wh	

^{*} only with order option F02

